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Abstract. In this paper, an analytical wake model with a double Gaussian velocity distribution is presented, improving on a

similar formulation by Keane et al. The choice of a double Gaussian shape function is motivated by the behavior of the near

wake region, observed in numerical simulations and experimental measurements. The method is based on the conservation

of momentum principle, while stream-tube theory is used to determine the wake expansion at the tube outlet. The model is

calibrated and validated using large eddy simulations replicating scaled wind turbine experiments. Results show that the tuned5

double Gaussian model is superior to a single Gaussian formulation in the near wake region.

1 Introduction

Analytical engineering wind farm models are low-fidelity approximations used to simulate the performance of wind power

systems. A wind farm model includes both a model of the wind turbines and a model of the modifications to the ambient

flow induced by their wakes, together with their mutual interactions. Analytical wake models, as opposed to high-fidelity10

computational fluid dynamics (CFD) models, are simple, easy to implement and computationally inexpensive. In fact, they

only simulate macroscopic average effects of wakes and not their small scales and turbulent fluctuations. Engineering wake

models find applicability in all those cases that do not need to resolve small spatial and fast temporal scales, such as the

calculation of the power production of a wind plant over a sufficiently long time horizon. Such models are also extremely

useful in optimization problems, where a large number of simulations might be required before a solution is reached, or where15

calculations need to be performed on the fly in real-time. Analytical wake models are thus often utilized in wind farm layout

planning and in the emerging field of wind farm and wake control (Scholbrock, 2011; Churchfield, 2013; Boersma et al., 2017).

Because of their indisputable usefulness, engineering wake models have been extensively studied in the literature. The

Jensen (PARK) formulation is one of the most widely used wake models, to the extent that it is sometimes considered as the

industry standard (Keane et al., 2016). The model was first introduced by Jensen (1983), and later further developed by Katic20

et al. (1986). Other widely used and cited wake models include the Frandsen model (Frandsen et al., 2006), the FLORIS model

(Gebraad et al., 2014), and the EPFL Gaussian models (Bastankhah and Porté-Agel, 2014, 2016).

All such models have been designed to faithfully represent the average flow properties of the far wake region. However, in

the near wake (which is usually defined as the region up to about 4 diameters (D) downstream of the rotor disk), the models

seem to lack accuracy. Nowadays, onshore wind farms tend to be closely packed, and turbine spacing often reaches values25
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below 3D. This raises the necessity of developing models that accurately represent the wake not only far away from the rotor

disk, but also in the near and mid-wake regions.

Keane et al. (2016) developed a wake model featuring a double Gaussian velocity deficit distribution, in an attempt to

formulate a model that closely resembles observed speed distributions in both the near and far wake regions. In fact, while a

single Gaussian function is considered to be a good approximation of the wake velocity distribution in the far wake (Bastankhah30

and Porté-Agel, 2014, 2016), the near wake is better approximated using a double Gaussian distribution. This is due to the

presence of two peaks in the speed profiles close to the rotor disk, as also observed in experimental measurements and high-

fidelity CFD simulations (Wang et al., 2017). The double Gaussian model by Keane et al. (2016), which is referred to as the

Keane model in this paper, was developed in a similar fashion to the EPFL Gaussian model (Bastankhah and Porté-Agel, 2014),

and was intended to respect the principles of mass and momentum conservation.35

In this short note, a double Gaussian wake model, based on Keane’s model and with emphasis on near wake flow behavior,

is derived, calibrated and validated. The present formulation addresses and resolves some issues found in the original imple-

mentation of Keane et al. (2016), primarily concerning momentum conservation. In addition, the wake expansion function is

defined such that mass flow deficit conservation is achieved at the stream-tube outlet.

This paper is organized as follows. The derivation of the double Gaussian wake model is detailed in Section 2, along40

with the formulation of the wake expansion function. In Section 3, the model is tuned and validated, using both experimental

measurements obtained with scaled models in a boundary layer wind tunnel and by numerical results of high-fidelity large eddy

simulations (LES). Additionally, the performance of the double Gaussian model is compared to a standard single Gaussian

formulation. Finally, concluding remarks and future work recommendations are given in Section 4. Appendix A derives some

integrals appearing in the formulation.45

2 Wake model description

2.1 Double Gaussian velocity deficit

The double Gaussian wake model is derived in a similar way to the Frandsen (Frandsen et al., 2006) and EPFL single Gaussian

models (Bastankhah and Porté-Agel, 2014). Following their approach, the conservation of momentum principle is applied

on an ansatz velocity deficit distribution, which includes an amplitude function. Thereby, an expression for the amplitude is50

obtained that assures conservation of momentum.

At the downstream distance x from the wind turbine rotor and at the radial distance r from the wake centerline, the wake

velocity deficit U∞−U(x,r) is modeled as the product of the normalized double Gaussian function g(r,σ(x)), which dictates

the spatial shape of the deficit, with the amplitude function C(σ(x)). This yields

U∞−U(x,r)
U∞

= C(σ(x))g(r,σ(x)), (1)55
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where U∞ represents the ambient wind speed and U(x,r) the local flow velocity in the wake. The double Gaussian wake shape

function, which is symmetric with respect to the wake center, is defined as

g(r,σ(x)) =
1
2
(
eD+ + eD−

)
, D± =

−(r± r0)2

2σ2(x)
, (2)

where r0 is the radial position of the Gaussian extrema. The standard deviation of the Gaussian function, noted σ(x), represents

the width (cross-section) of each of the two single Gaussian profiles. The wake expands with downstream distance x, causing60

the transformation of the initial double Gaussian profile in the near wake, through a flat-peak transition region, into a nearly

single Gaussian profile in the far wake. The wake expansion function is discussed in further detail in §2.2.

Figure 1. Stream tube with nomenclature: U∞ is the ambient wind speed; U(x,r) is the local flow velocity in the wake at the downstream

position x and radial distance r from the wake centerline; ṁ is the mass flow rate through the stream tube; AW is a planar cross-sectional

area large enough to contain the wake deficit, and A0 is the rotor disk area; T is the thrust force (by the principle of action and reaction, an

equal and opposite force is applied by the rotor onto the flow).

The conservation of momentum principle is now applied on the ansatz velocity deficit distribution, using the amplitude

function C(σ(x)) as a degree of freedom. Accordingly, the axial thrust force T is related to the rate of change of momentum p

of the flow throughout the stream tube (see Fig. 1), i.e.65

T =
dp
dt

= ṁ∆Ũ = ρ

∫

AW

U(x,r)(U∞−U(x,r)) dAW, (3)

where ṁ is the mass flow rate through the stream tube, ∆Ũ an effective wake velocity deficit, ρ the air density and AW a

planar cross-section at least large enough to contain the wake deficit. Equation (3) is only valid if there is an equal pressure

and negligible flow acceleration at the inlet and outlet sections of the the stream tube and, additionally, if shear forces on the

control volume can be neglected. The thrust force T is customarily expressed through the non-dimensional thrust coefficient70

CT as

T =
1
2
ρA0U

2
∞CT, (4)
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where A0 is the rotor swept area.

If the wake velocity, defined in Eqs. (1) and (2), is substituted into the Eq. (3), one obtains

T = ρπU2
∞C(σ)

∞∫

0

(
eD+ + eD− − C(σ)

2
(
e2D+ + e2D− + 2eD++D−

))
rdr. (5)75

Note that, as the double Gaussian wake expands all the way to infinity, the integral boundary is set accordingly. The integration

of Eq. (5), whose details are provided in Appendix A, yields

T = ρπU2
∞C(σ)(M −C(σ)N) , (6)

where

M = 2σ2e
−r20
2σ2 +

√
2πr0σ erf

(
r0√
2σ

)
, (7a)80

N = σ2e
−r20
σ2 +

√
π

2
r0σ erf

(r0
σ

)
. (7b)

By substituting the thrust given by Eq. (4) into Eq. (6), and solving the resulting quadratic equation for the amplitude function

C(σ), one obtains

C±(σ(x)) =
M ±

√
M2− 1

2NCTd2
0

2N
, (8)

where d0 =
√

4A0/π is the rotor diameter. Both solutions of the amplitude function C(σ) would theoretically lead to the con-85

servation of momentum at all downstream distances. However, the velocity profiles obtained by using C+(σ) are characterized

by a negative speed (i.e., in the direction opposite to the ambient flow), and thus C+(σ) is deemed to be a nonphysical solution.

Therefore, the true solution for the amplitude function is C−(σ). In addition, a momentum-conserving solution exists only if

M2− 1/2NCTd
2
0 ≥ 0, which might not always be the case for large values of CT.

The derived expressions for M and N presented in this paper differ from the results reported in the original publication90

by Keane et al. (2016), even though all assumptions are identical. The expressions reported in the original paper were also

evaluated numerically, yielding nonphysical results that violate the conservation of mass and momentum underlying the for-

mulation.

2.2 Wake expansion function

In the previous section, following the conservation of momentum, the shape of the double Gaussian wake deficit has been95

defined as a function of the Gaussian parameter σ. In this section, a wake expansion function σ(x) is introduced, which is

linear with respect to the downstream distance x. By mass conservation, the wake expansion at the position of the stream tube

outlet is therefore identified.

In previous work by Frandsen et al. (2006) and Bastankhah and Porté-Agel (2014), stream tube theory was employed to

derive an equation for the initial wake width at the turbine rotor. Thereby, the number of tunable parameters of the wake100
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expansion function is reduced, facilitating model calibration. However, this approach includes the assumption that the stream

tube outlet is located exactly at the turbine rotor itself, which is hardly true. Results indicate that the derived initial wake width

is too large to fit experimental measurements, which in turn requires a model re-tuning (Bastankhah and Porté-Agel, 2014).

In the present work, the stream tube outlet is not assumed to be located at the turbine rotor (x= 0), but at the unknown

downstream position x0. Therefore, the expansion function is defined as105

σ(x) = k∗(x−x0) + ε, (9)

where parameter k∗ controls the rate of expansion, while ε represents the wake expansion at x0. The wake expansion function

is assumed to be linear as in Bastankhah and Porté-Agel (2014).

To derive ε, mass conservation between the Betz stream tube and the wake model is enforced. Starting from Eq. (3), Frandsen

et al. (2006) and Bastankhah and Porté-Agel (2014) show that the mass flow deficit rate at the outlet of a Betz stream tube110

(noted ST) can be written as

ṁST = ρ

∫

AST

U∞−UST

U∞
dAST = ρ

π

8
d2
0β

(
1−

√
1− 2

β
CT

)
, (10)

where UST is the uniform cross-sectional wake velocity. In this expression, β is the ratio between the stream tube outlet area

AST and the rotor disk area A0, which can be expressed as a function of the thrust coefficient CT as

β =
AST

A0
=

1
2

1 +
√

1−CT√
1−CT

. (11)115

At the Betz stream tube outlet (x= x0), the mass flow deficit rate of the double Gaussian (noted DG) wake model writes

ṁDG = ρ

∫

AW

U∞−U(x0, r)
U∞

dAW = ρπM(ε)
M(ε)−

√
M(ε)2− 1

2N(ε)CTd2
0

2N(ε)
. (12)

By equating both mass flow deficits (i.e., ṁDG = ṁST), the initial wake expansion ε can be derived. The solution was computed

numerically as a function of the thrust coefficient CT and the spanwise location of the Gaussian extrema r0. The resulting

surface is presented in Fig. 2. Note that the solution of stream tube theory is defined only in the range 0≤ CT < 1, and that ε120

tends to infinity as the thrust coefficient approaches the value of 1, due to mass conservation.

The remaining parameters x0 and k∗ in the linear wake expansion function expressed by Eq. (9) are not explicitly modeled,

and should be tuned based on experimental measurements or high-fidelity simulations, as shown in the next section. Note that

the underlying momentum conservation statement expressed by Eq. (3) has only been defined for ambient pressure. Therefore,

the formulation is, strictly speaking, only valid for x≥ x0. However, as pressure recovers rapidly immediately downstream125

of the rotor, resonable approximations can also be expected for x < x0. Finally, k∗ is expected to depend on atmospheric

conditions (Peña et al., 2016) and turbine thrust (Bottasso et al., 2019).
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Figure 2. Visualization of the width of the double Gaussian function ε at the stream tube outlet, as a function of the thrust coefficient CT and

the position of the Gaussian extrema r0.

3 Model calibration and validation

3.1 Experimental and simulation setup

To calibrate and validate the double Gaussian wake model, time-averaged flow measurements from an LES numerical solution130

have been used. The CFD simulation replicates an experiment conducted with the scaled G1 wind turbine (Campagnolo et al.,

2017; Bottasso et al., 2019), which has a 1.1 m rotor diameter and a 0.8 m hub height. Its design operating tip speed ratio is 8

and its rated rotor speed is 850 rpm. The G1 model is designed such that the characteristics of its wake are realistic in terms

of shape, velocity deficit and recovery. In addition, the model features closed-loop pitch, torque and yaw control, as well as

load sensors located at the shaft and tower base (Campagnolo et al., 2017). The experiment was conducted with a single G1135

wind turbine model in the 36 m × 16.7 m × 3.84 m boundary layer wind tunnel at Politecnico di Milano. The wake profile

was measured using hot-wire probes at the downstream distances x/D = {1.4, 1.7, 2, 3, 4, 6, 9} from the turbine. At each

downstream location, the velocity was measured at hub height at different lateral positions y, and then time-averaged to obtain

a steady-state value. The ambient wind velocity within the wind tunnel was measured using a pitot tube placed upwind of

6

https://doi.org/10.5194/wes-2019-52
Preprint. Discussion started: 23 August 2019
c© Author(s) 2019. CC BY 4.0 License.



the G1 model. The wind tunnel experiment was conducted with a 5 ms−1 ambient wind speed and a turbulence intensity of140

approximately 5%, with the wind turbine operating at CT ≈ 0.75.

A complete digital copy of the experiment was developed with the LES simulation framework developed by Wang et al.

(2017), which includes the passive generation of a sheared and turbulent flow, an actuator line model of the wind turbine

implemented with the FAST aeroveroelastic simulator (Jonkman et al., 2005), as well as the tunnel walls. The simulation

model includes also a slight lateral non-uniformly of the inflow, in the form of a 2.7% horizontal shear, caused by the wind145

tunnel internal layout upstream of the test chamber and by the tunnel fans. The proposed double Gaussian wake model was

calibrated and validated using time-averaged CFD simulation results at the same downstream distances as the experiments,

numerical and experimental measurements being in excellent agreement with each other.

3.2 Parameter identification and results

The double Gaussian model proposed in this work has three tunable parameters: k∗, x0, and kr. Parameters k∗ and x0 are used150

to describe the wake expansion downstream of the turbine rotor, as expressed by Eq. (9). The third parameter, kr, is defined as

r0 = kr/2 and describes the position of the Gaussian extrema. When kr = 1 the curve extrema are located at the tip of the rotor

blades, while for kr = 0 the two Gaussian functions coincide at the wake center, leading to a single Gaussian wake profile.

In the original formulation by Keane, kr was fixed at 75% blade-span, as it was argued that most lift is extracted from

the flow at this location. In the present work the parameter is tuned based on measurements, as the assumed 75% blade-span155

position did not lead to satisfactory results.

The goal of model calibration is to ensure that the wind velocity profiles match the reference data set as closely as possible.

To this end, the squared error between the wake model and CFD-computed wake profiles is minimized with respect to the

free parameters. This estimation problem was solved using the Nelder-Mead simplex algorithm implemented in the MATLAB

function fminsearch (Lagarias et al., 1998). To ensure the generality of the results, only a subset of the reference data160

was used for parameter estimation (namely, the downstream distances 1.7 D, 3 D and 6 D), while the others were used for

verification purposes.

The identified parameters are presented in Table 1. The Gaussian extrema were found to be at approximately 53.5% of

blade-span (kr = 0.535), while the wake width at x0 is ε= 0.23 D. Model calibration also resulted in the positioning of the

stream tube outlet at x0 = 4.55 D, which appears to be a realistic value for the investigated turbine.165

Table 1. Identified model parameters.

Operating conditions Parameters

U∞ [ms−1] CT [-] k∗ [-] x0 [D] kr [-]

5.00 0.75 0.011 4.55 0.535
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Figure 3 shows the experimental wake measurements using black circles, for all available downstream distances. The CFD

results, shown using red × symbols, are almost identical to the experimental measurements, highlighting the quality of the

LES simulations. The predictions of the double Gaussian model are shown in blue solid lines.
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Figure 3. Normalized wind velocity profiles of the double Gaussian model (blue solid), compared to experimental measurements (black

circles) and CFD simulations (red × symbols). The distances 1.7 D, 3 D and 6 D were used for model calibration.

The model exhibits good generality, as demonstrated by the good matching of the profiles at distances that were not used for

model estimation. Especially in the near wake region up to about 3 D, the placement of the Gaussian extrema appears to be in170

good agreement with the measured one.

The performance of the model clearly depends on the data used for its calibration. Using reference data close to the turbine

rotor is important for accurately gauging the positions of the velocity profile extrema, while a wider rage of distances leads to

an improved expansion behavior. In the present case, more data from the near wake region (1.7 D and 3 D) was considered in

the tuning process than in the far wake (6 D). This leads to a slight overestimation of the velocity deficit at 9 D, which could175

be attributed to an underestimation of the expansion slope k∗. However, tuning the model using the entire set of reference data

points leads to only small differences in the identified parameters, which in turn produce wake profiles that are fairly similar

to the ones presented here. On the other hand, identifying the model using only data points from the far wake resulted in better

fitting results at 9 D, but with either very small values of r0 —which lead to nearly single-Gaussian profiles—, or with high

values of the k∗ expansion slope —which lead to non-physical solutions of Eq. (8) for the amplitude function in the near wake180

region, due to excessively small Gaussian widths.

Figure 4 depicts with a solid blue line and ∗ symbols the root mean square error (RMSE) between the DG wake model (based

on the parameters reported above, obtained from measurements at 1.7 D, 3 D and 6 D) and the reference CFD data as a function

of downstream distance. To identify a lower error bound, the DG wake model parameters were also tuned separately at each

downstream distance, obtaining seven different local parameterizations. The corresponding RMSE with respect to the CFD185
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solution is reported in the same figure using a dashed blue line. The small difference between the two curves shows that the

single (global) parameterization computed using only three distances is only marginally sub-optimal, in the sense that it is very

close to the best possible fitting that a double Gaussian shape function can achieve. The plot shows also a slight increase of the

difference between the two curves in the far wake region, which can again be attributed to the fact that only one large-distance

(6 D) measurement was used in the global tuning.190

As a comparison, Fig. 4 also shows the results obtained with the EPFL single Gaussian (SG) model (Bastankhah and Porté-

Agel, 2014). The SG model was identified with the same procedure and measurements used for the DG model, obtaining

εSG = 0.3177 and k∗SG = 0.0082; the corresponding RMSE with respect to the CFD results is reported in the figure using a

solid red line with circles. The lower error bound for the SG model, here again obtained by tuning the parameters independently

at each one of the seven available downstream distances, is shown using a dashed red line. As expected, the SG wake model195

shows a significantly larger RMSE in the near wake region than in the DG case. In fact, here the wake profile is indeed

characterized by two peaks, so that the double Gaussian shape function allows for a more precise representation of the actual

flow characteristics. Here again it should be noted that the difference between the global and local parameterizations is quite

small, which strengthens the conclusion that improved results are due to the ansatz velocity deficit distribution and not to the

specific parameterizations.200
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Figure 4. Root mean square error between the reference CFD velocity deficit data and the engineering wake models. Double Gaussian (DG)

wake model identified using measurements at 1.7 D, 3 D and 6 D: solid blue line with ∗ symbols. DG wake model parameterized locally at

each downstream distance: dashed blue line. Single Gaussian (SG) EPFL wake model identified using measurements at 1.7 D, 3 D and 6 D:

solid red line with circles. SG EPFL wake model parameterized locally at each downstream distance: dashed red line.

4 Conclusions

This short paper presented an analytical double Gaussian wake model. The proposed formulation corrects and improves a

previously published model proposed by Keane et al. The shape of the velocity deficit distribution in the wake is described by

two Gaussian functions, which are symmetric with respect to the wake center, while the amplitude of the velocity deficit is

9

https://doi.org/10.5194/wes-2019-52
Preprint. Discussion started: 23 August 2019
c© Author(s) 2019. CC BY 4.0 License.



derived using the principle of momentum conservation. A linear expansion of the width of the Gaussian profiles was assumed,205

and stream tube theory was used to estimate the conditions at the stream tube outlet.

The model was calibrated and validated using a set of time-averaged CFD simulation results, which replicate wind tunnel

experiments performed with a scaled wind turbine in a boundary layer wind tunnel. Results show that the model fits the

reference data with good accuracy, especially in the near wake region where a single Gaussian wake is unable to describe the

typically observed bimodal velocity profiles. In the far wake, a slight overestimation of the wake deficit could be observed. It210

is speculated that this might be due to the wake expansion gradient being slightly different in the near and far wake regions.

This claim, however, would need additional work to be substantiated. Future work could extend the wake model to include

wake deflection, which could be done in a rather straightforward manner by following Bastankhah and Porté-Agel (2016). In

this case, a non-symmetric double Gaussian shape function could be used to model the kidney shape of a deflected wake (Bartl

et al., 2018).215

Code and data availability. A MATLAB implementation of the wake model and the data contained in this article can be obtained by con-

tacting the authors.

Appendix A: Integration of the momentum flux conservation formula

Equation (5) can be written as

T = ρπU2
∞C(σ)(M −C(σ)N) , (A1)220

where

M =

∞∫

0

(
eD+ + eD−

)
rdr, (A2a)

N =

∞∫

0

(
1
2
(
e2D+ + e2D− + 2eD++D−

))
rdr. (A2b)

In the following, integrals M and N are solved to obtain Eq. (7a) and (7b).

A1 Derivation of M225

M can be split into two terms:

M = I1 + I2. (A3)

Term I1 is defined as:

I1 =

∞∫

0

eD+rdr = lim
R→∞

R∫

0

re
−(r+r0)2

2σ2 dr. (A4)

10

https://doi.org/10.5194/wes-2019-52
Preprint. Discussion started: 23 August 2019
c© Author(s) 2019. CC BY 4.0 License.



Noticing that D± = −(r±r0)2
2σ2(x) , one gets230

I1 = lim
R→∞


−σ2e

−(r+r0)2

2σ2 −
√
πr0σ erf

(
r+r0√

2σ

)

√
2



R

0

, (A5a)

= σ2e
−r20
2σ2 −

√
2πr0σ

2
erfc

(
r0√
2σ

)
, (A5b)

where erf is the Gauss error function

erf(x) =
1√
π

x∫

−x

e−t
2
dt, (A6)

and erfc(x) = 1− erf(x) its complementary function. Similarly, I2 writes:235

I2 =

∞∫

0

eD−rdr = lim
R→∞

R∫

0

re
−(r−r0)2

2σ2 dr, (A7)

and its integral is computed as

I2 = lim
R→∞


−σ2e

−(r−r0)2

2σ2 +

√
πr0σ erf

(
r−r0√

2σ

)

√
2



R

0

, (A8a)

= σ2e
−r20
2σ2 +

√
2πr0σ

2
erfc

( −r0√
2σ

)
. (A8b)

Combining the previous results, one gets Eq. (7a), i.e.240

M = I1 + I2 = 2σ2e
−r20
2σ2 +

√
2πr0σ erf

(
r0√
2σ

)
. (A9)

A2 Derivation of N

Term N can be split into three terms

N =
1
2

(I3 + I4 + 2I5) . (A10)

Terms I3 and I4 are collectively defined as:245

I3 + I4 =

∞∫

0

(
e2D+ + e2D−

)
rdr = lim

R→∞

R∫

0

re
−(r+r0)2

σ2 + re
−(r−r0)2

σ2 dr. (A11)

Solving the integral yields:

I3 + I4 = lim
R→∞

[−σ2

2

(
e
−(r+r0)2

σ2 + e
−(r−r0)2

σ2

)
−
√
π

2
r0σ

(
erf
(
r+ r0
σ

)
− erf

(
r− r0
σ

))]R

0

, (A12a)

= σ2e
−r20
σ2 +

√
πr0σ erf

(r0
σ

)
. (A12b)
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Finally, I5 is defined as:250

I5 =

∞∫

0

eD++D−rdr = lim
R→∞

R∫

0

re

(
−(r+r0)2

2σ2 − (r−r0)2

2σ2

)
dr, (A13)

which, once integrated, gives

I5 = lim
R→∞

[
−σ2

2
e
−(r2+r20)

σ2

]R

0

, (A14a)

=
σ2

2
e
−r20
σ2 . (A14b)

Therefore, one gets255

N =
1
2

(I3 + I4 + 2I5) = σ2e
−r20
σ2 +

√
π

2
r0σ erf

(r0
σ

)
, (A15)

which corresponds to Eq. (7b).
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